





# CAD-Assistant: Tool-Augmented VLLMs as Generic CAD Task Solvers

Dimitrios Mallis<sup>1</sup>, Ahmet Serdar Karadeniz<sup>1</sup>, Sebastian Cavada<sup>1</sup>, Danila Rukhovich<sup>1</sup>, Niki Foteinopoulou<sup>1</sup>, Kseniya Cherenkova<sup>2</sup>, Anis Kacem<sup>1</sup>, Djamila Aouada<sup>1</sup>

<sup>1</sup>SnT, University of Luxembourg <sup>2</sup>Artec3D, Luxembourg

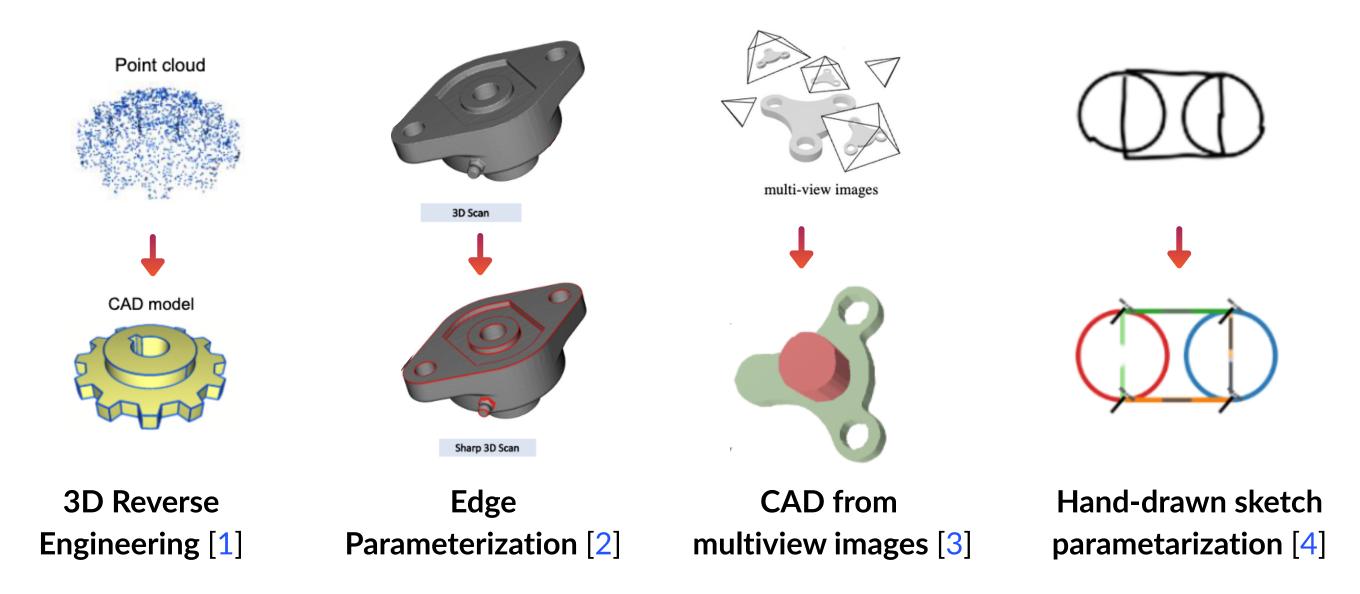


Project Page

https://cadassistant.github.io/










dimitrismallis/CAD-Assistant



There is significant research interest in CAD automation but most research efforts focus on **fixed CAD workflows**.



- [1] Rukhovich, D. et al. "CAD-Recode: Reverse Engineering CAD Code from Point Clouds." ICCV (2025).
- [2] Cherenkova, K. et al. "SepicNet: Sharp Edges Recovery by Parametric Inference of Curves in 3D Shapes." CVPRW (2023).
- [3] Hong, E. et al. "MV2Cyl: Reconstructing 3D Extrusion Cylinders from Multi-View Images." NeurIPS (2024).
- [4] Karadeniz, A. et al. "DAVINCI: A Single-Stage Architecture for Constrained CAD Sketch Inference." BMVC (2024).

Vision and Large Language Models (VLLMs) have potential for enabling Al-assisted CAD design.

VLLMs have been shown to be weak in in **geometric reasoning** and **handling of mathematical concept**:

- Interpret CAD models from their CAD sequences [1].
- Recognize spatial arrangement [2].
- Correctly orient primitives [3].
- Predict the cumulative effects of the CAD commands.

<sup>[1]</sup> Qiu, Z. et al. "Can Large Language Models Understand Symbolic Graphics Programs?" ICLR (2025).

<sup>[2]</sup> Sharma, P. et al. "A Vision Check-up for Language Models." CVPR (2024).

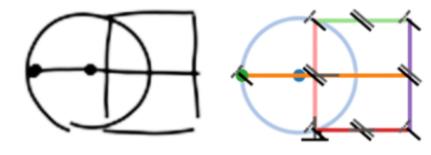
<sup>[3]</sup> Makatura, L. et al. "How Can Large Language Models Help Humans in Design And Manufacturing?" Arxiv (2024)



A generic tool-augmented VLLM framework that integrates CAD-specific tools to address the limitations of VLLMs in Al-assisted CAD.



# CAD-Assistant: CAD-Specific Tools


CAD-Assistant is equipped with a diverse set of CAD-specific tools and can process multimodal inputs, including hand-drawn sketches and 3D scans.





CAD software intergration

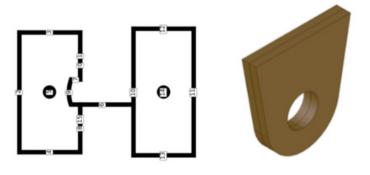
### **Sketch Parameterizer**



Hand-drawn image to constrained CAD sketch

**Python** 




Actions and logical operations

### **Constraint Checker**



Constraint analysis routine

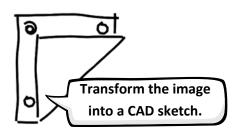
**CAD Recognizers** 

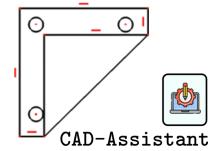


CAD sketch and CAD Model renderers

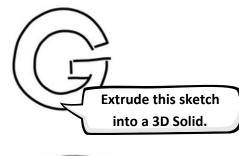
### **Crosssection Extractor**




Extract cross-section from 3D mesh

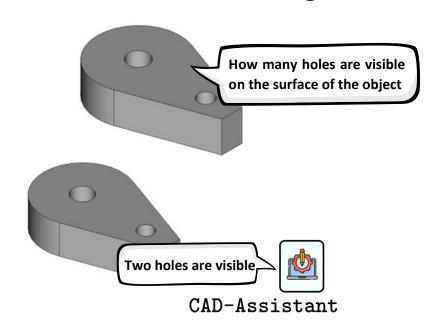



# cad-Assistant: Real-World Use Cases

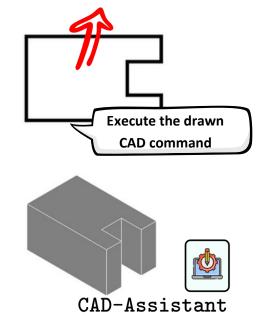

We evaluate CAD-Assistant on existing benchmarks and demonstrate diverse real-world use cases.

### Handdrawn Image Parameterization

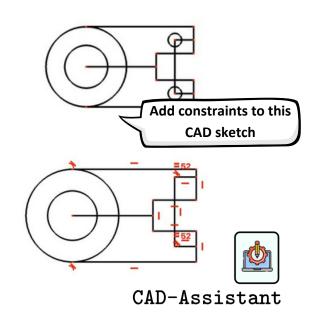




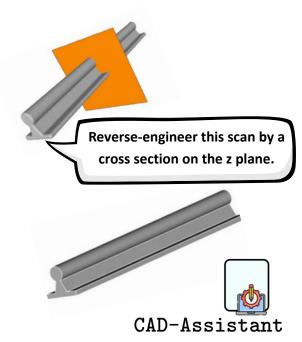

### Handdrawn sketch to 3D solid



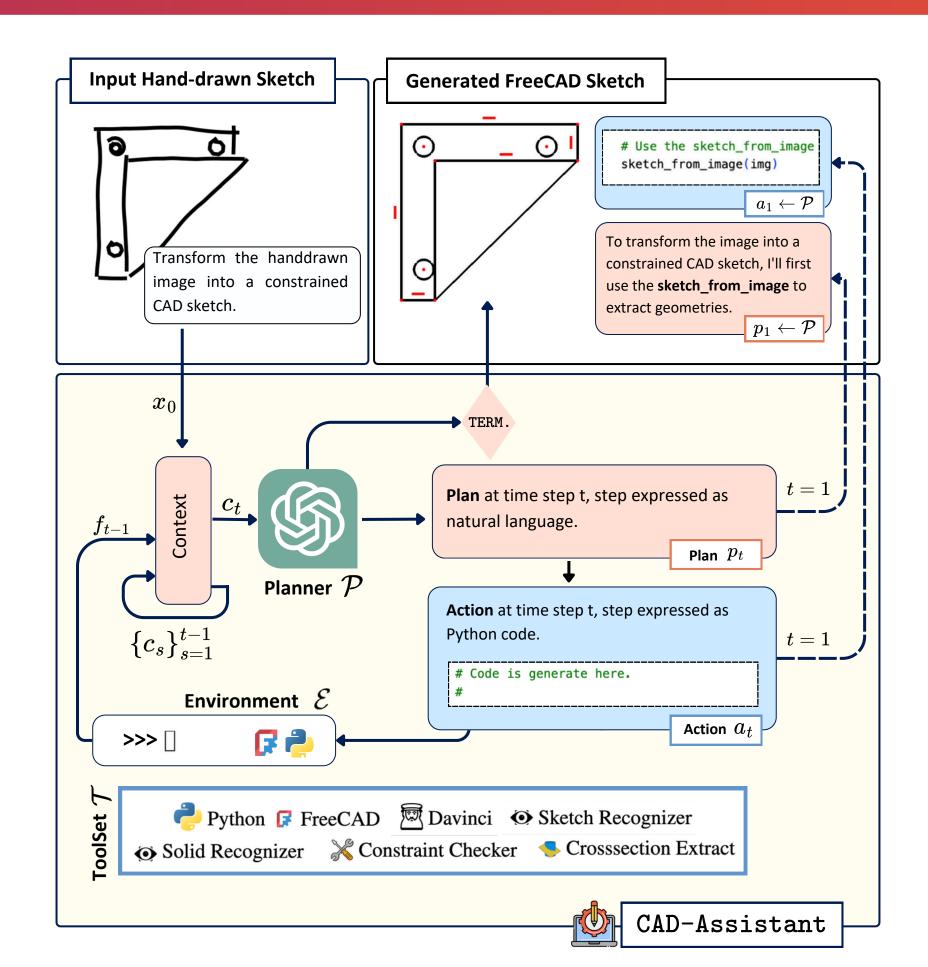




### **CAD Question Answering**



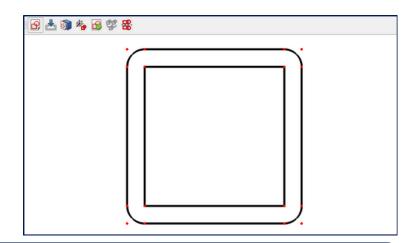

### **Visual Editing**




### **CAD Sketch Autoconstraining**



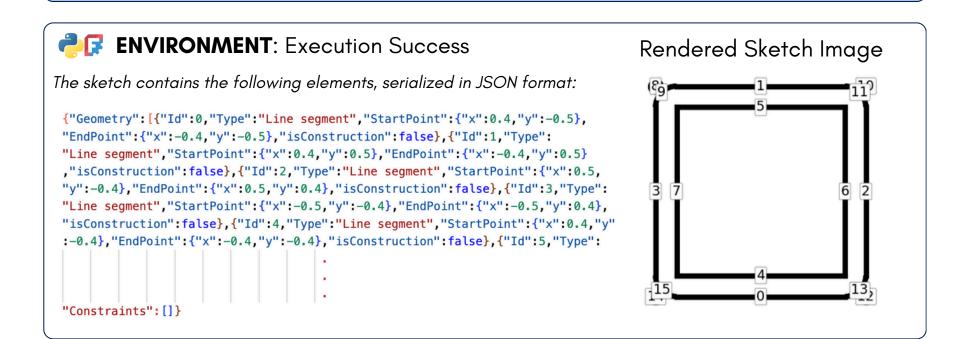
### 3D Reverse Engineering




# CAD-Assistant: Framework Overview



# CAD-Assistant: Autoconstraining Trajectory


**USER QUERY**: Analyse the sketch to identify geometric relationships and apply parametric constraints.



**PLAN**: To analyze the sketch and apply the appropriate parametric constraints, I will first use the *sketch\_recognizer* function to understand the current state of the sketch. Then I will use the analyse\_constraints function to evaluate their validity and impact on the sketch before applying them.

**ACTION**: Use the *sketch\_recognizer* function to analyze the current state of the sketch.

# Use the sketch\_recognizer function to analyze the current state of the sketch sketch\_recognizer(sketch)

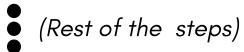


# CAD-Assistant: Autoconstraining Trajectory

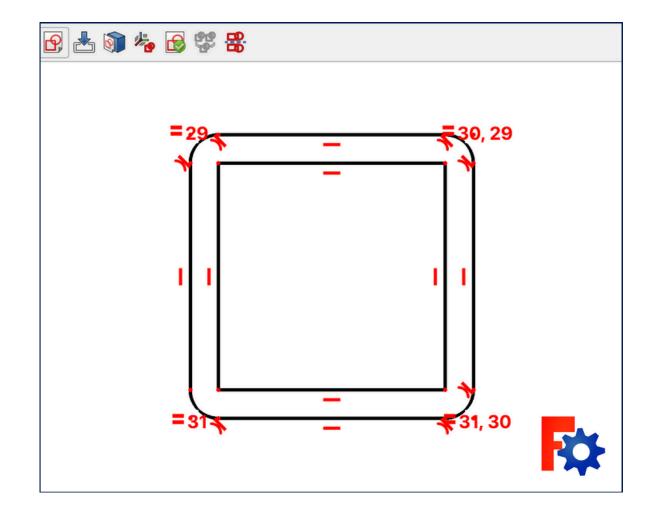
**PLAN**: The sketch consists of several line segments and arcs forming a square with rounded corners. To ensure the sketch is fully constrained, I will apply the following constraints:

- 1. Coincident constraints to connect endpoints of adjacent geometries.
- 2. Horizontal and Vertical constraints for the straight line segments.
- 3. Equal constraints for the arcs to ensure they have the same radius.
- 4. Tangent constraints between the arcs and the line segments.

I will first analyse and apply the Coincident constraints.


#### **ACTION**: Analyze and apply Coincident constraints to connect geometries.

```
# Define Coincident constraints for connecting endpoints
coincident_constraints = [
    Sketcher.Constraint('Coincident', 0, SubRef.START.value, 15, SubRef.END.value),
    Sketcher.Constraint('Coincident', 0, SubRef.END.value, 13, SubRef.START.value),
    Sketcher.Constraint('Coincident', 1, SubRef.START.value, 9, SubRef.END.value),
    Sketcher.Constraint('Coincident', 1, SubRef.END.value, 11, SubRef.START.value),
    Sketcher.Constraint('Coincident', 2, SubRef.START.value, 11, SubRef.END.value),
    Sketcher.Constraint('Coincident', 2, SubRef.END.value, 13, SubRef.END.value),
    Sketcher.Constraint('Coincident', 3, SubRef.START.value, 15, SubRef.START.value),
    Sketcher.Constraint('Coincident', 3, SubRef.END.value, 9, SubRef.START.value),
    Sketcher.Constraint('Coincident', 4, SubRef.START.value, 7, SubRef.END.value),
    Sketcher.Constraint('Coincident', 4, SubRef.END.value, 6, SubRef.START.value),
    Sketcher.Constraint('Coincident', 5, SubRef.START.value, 7, SubRef.START.value),
    Sketcher.Constraint('Coincident', 5, SubRef.END.value, 6, SubRef.END.value)
# Analyze and apply constraints
for i, constraint in enumerate(coincident_constraints):
    is_valid, moves_geometries = analyse_constraint(sketch, constraint)
   if is_valid and not moves_geometries:
        sketch.addConstraint(constraint)
sketch.recompute()
```




# CAD-Assistant: Autoconstraining Trajectory

**PLAN:** The Coincidents have been applied, ensuring that the loops are closed. Next, I will apply Horizontal and Vertical constraints to the straight line segments to maintain their orientation.



**PLAN:** The sketch is now properly constrained. **TERMINATE**.





# Tool Use for Effective Geometric Reasoning

VLLMs have shown limited ability to geometrically comprehend CAD programs. We examine **CAD representations** that can be derived via tool-use to improve geometric reasoning.

#### **Parametrization Strategies**

#### Implicit

```
Line = (
  refX, refY,
  dirX, dirY,
 startDist, endDist
Arc = (
 centerX, centerY,
  dirX, dirY,
 clockwise,
 startAngle, endAngle
```

#### Point-based

```
Line = (
  startX, startY,
  endX, endY
Arc = (
  startX, startY,
  midX, midY,
  endX, endY
```

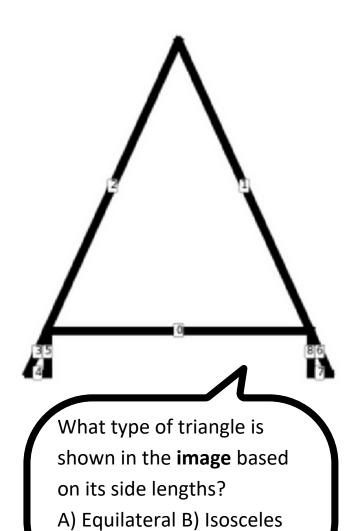
#### Over-parameterized

```
Line = (
 refX, refY, dirX, dirY, startDist, endDist,
 startX, startY, endX, endY
Arc = (
 centerX, centerY, dirX, dirY, startX, startY,
 midX, midY, endX, endY, clockwise, startAngle, endAngle
```

#### **Serialization Strategies**

#### Json

```
{"Geometry":[{"Id":0,"Type":"Line segment","StartPoint":{"x":0.4,"y":-0.5},
"EndPoint":{"x":-0.4,"y":-0.5},"isConstruction":false},{"Id":1,"Type":
"Line segment", "StartPoint": {"x":0.4,"y":0.5}, "EndPoint": {"x":-0.4,"y":0.5}
"isConstruction":false},{"Id":2,"Type":"Line segment","StartPoint":{"x":0.5,
"y":-0.4},"EndPoint":{"x":0.5,"y":0.4},"isConstruction":false},{"Id":3,"Type":
"Line segment", "StartPoint": {"x":-0.5,"y":-0.4}, "EndPoint": {"x":-0.5,"y":0.4},
"isConstruction":false},{"Id":4,"Type":"Line segment","StartPoint":{"x":0.4,"y"
:-0.4}, "EndPoint": {"x":-0.4, "y":-0.4}, "isConstruction": false}, {"Id":5, "Type":
```


#### HTML

```
IdTypeStartPoint_xStartPoint_yEndPoint_xEndPoint_y
 31d>40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4</td
 4Line segment0.40.40.40.4
 51d>0.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.40.4</
```

#### CSV

```
Id,Type,Start_x,Start_y,End_x,End_y,isConstr
0,"Line segment", 0.4, -0.5, -0.4, -0.5, false
1,"Line segment", 0.4, 0.5, -0.4, 0.5, false
2,"Line segment", 0.5, -0.4, 0.5, 0.4, false
3,"Line segment", -0.5, -0.4, -0.5, 0.4, false
4,"Line segment", 0.4, -0.4, -0.4, -0.4, false
5,"Line segment", 0.4, 0.4, -0.4, 0.4, false
```

#### **Rendering-based Reasoning**



C) Scalene D) Right



# Tool Use for Effective Geometric Reasoning

## Investigation of tool-derived CAD representations for 2D CAD QA.

| Serialization             | Parametarization                           | 2D Acc |  |  |
|---------------------------|--------------------------------------------|--------|--|--|
| Common CAD Sketch formats |                                            |        |  |  |
| Serialized Graph          | Implicit                                   | 0.674  |  |  |
| DXF                       |                                            | 0.671  |  |  |
| OCA                       |                                            | 0.707  |  |  |
| Serialization Strate      | egy (Tabular formats)                      |        |  |  |
| CSV                       | Point-based                                | 0.703  |  |  |
| Markdown                  | Point-based                                | 0.706  |  |  |
| HTML                      | Point-based                                | 0.710  |  |  |
| Serialization Strate      | egy (Schema-embedded formats)              |        |  |  |
| Serialized Graph          | Point-based                                | 0.744  |  |  |
| JSON                      | Point-based                                | 0.748  |  |  |
| JSON                      | Overparametarized                          | 0.747  |  |  |
| Re                        | endering-based Reasoning                   |        |  |  |
| CAD Sketch Image          | туре — — — — — — — — — — — — — — — — — — — |        |  |  |
| Hand-drawn Sketc          | h                                          | 0.616  |  |  |
| <b>Precise Rendering</b>  |                                            | 0.754  |  |  |

## Findings:

- Schema-embedded representation performs better than tabular formats.
- The Planner is sensitive to the geometry parameterization.
- Rendering-based question answering surpasses text-based recognition.



# Tool Use for Effective Geometric Reasoning

The proposed zero-shot method is evaluated on standard CAD benchmarks. The CAD-Assistant outperforms baselines and task-specific approaches.

## **CAD Question Answering**

| Method        | Planner     | 2D Acc       | 3D Acc       |
|---------------|-------------|--------------|--------------|
| SGPBench [1]  | GPT-4 mini  | 0.594        | 0.737        |
|               | GPT-4 Turbo | 0.674        | 0.762        |
|               | GPT-40      | 0.686        | 0.782        |
| CAD-ASSISTANT | GPT-4 mini  | 0.614        | 0.783        |
|               | GPT-4 Turbo | 0.741        | 0.825        |
|               | GPT-4o      | <b>0.791</b> | <b>0.857</b> |

## **CAD Sketch Autoconstraining**

| Method                             | Type       | <i>PF1</i> ↑ | CF1 ↑        |
|------------------------------------|------------|--------------|--------------|
| GPT-4o Vitruvion [2] CAD-ASSISTANT | zero-shot  | 0.693        | 0.274        |
|                                    | supervised | 0.706        | 0.238        |
|                                    | zero-shot  | <b>0.979</b> | <b>0.484</b> |

## Hand-drawn sketch image Parameterization

| Method        | $Acc\uparrow$ | $CD\downarrow$ |
|---------------|---------------|----------------|
| Vitruvion [2] | 0.659         | 1.586          |
| Davinci [3]   | 0.789         | 1.184          |
| CAD-ASSISTANT | 0.784         | 0.680          |

<sup>[1]</sup> Qiu, Z. et al. "Can Large Language Models Understand Symbolic Graphics Programs?" ICLR (2025).

<sup>[2]</sup> Seff et al. "Vitruvion: A Generative Model of Parametric CAD Sketches." ICLR (2022).

<sup>[3]</sup> Karadeniz et al. "DAVINCI: A Single-Stage Architecture for Constrained CAD Sketch Inference." BMVC (2024).







### Project Page

https://cadassistant.github.io/







#### Github

dimitrismallis/CAD-Assistant





